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Abstract

Artificial intelligence research has foundered on the issue of representation. When intelligence is approached in an incremental manner, with
strict reliance on interfacing to the real world through perception and action, reliance on representation disappears. In this paper we outline
our approach to incrementally building complete intelligent Creatures. The fundamental decomposition of the intelligent system is not into
independent information processing units which must interface with each other via representations. Instead, the intelligent system is
decomposed into independent and parallel activity producers which all interface directly to the world through perception and action, rather
than interface to each other particularly much. The notions of central and peripheral systems evaporateeverything is both central and
peripheral. Based on these principles we have built a very successful series of mobile robots which operate without supervision as Creatures in
standard office environments.

1. Introduction

Artificial intelligence started as a field whose goal
was to replicate human level intelligence in a
machine.

Early hopes diminished as the magnitude and
difficulty of that goal was appreciated. Slow progress
was made over the next 25 years in demonstrating
isolated aspects of intelligence. Recent work has
tended to concentrate on commercializable aspects of
"intelligent assistants" for human workers.

No one talks about replicating the full gamut of
human intelligence any more. Instead we see a retreat
into specialized subproblems, such as ways to
represent knowledge, natural language understanding,
vision or even more specialized areas such as truth
maintenance systems or plan verification. All the
work in these subareas is benchmarked against the
sorts of tasks humans do within those areas.
Amongst the dreamers still in the field of AI (those
not dreaming about dollars, that is), there is a feeling.
that one day all these pieces will all fall into place
and we will see "truly" intelligent systems emerge.

However, I, and others, believe that human level
intelligence is too complex and little understood to be
correctly decomposed into the right subpieces at the
moment and that even if we knew the subpieces we
still wouldn't know the right interfaces between
them. Furthermore, we will never understand how to
decompose human level intelligence until we've had a
lot of practice with simpler level intelligences.

In this paper I therefore argue for a different
approach to creating artificial intelligence:

• We must incrementally build up the capabilities of
intelligent systems, having complete systems at
each step of the way and thus automatically ensure
that the pieces and their interfaces are valid.

• At each step we should build complete intelligent
systems that we let loose in the real world with real
sensing and real action. Anything less provides a
candidate with which we can delude ourselves.

We have been following this approach and have built
a series of autonomous mobile robots. We have
reached an unexpected conclusion (C) and have a
rather radical hypothesis (H).

(C) When we examine very simple level intelligence
we find that explicit representations and models
of the world simply get in the way. It turns out
to be better to use the world as its own model.

(H) Representation is the wrong unit of abstraction
in building the bulkiest parts of intelligent
systems.

Representation has been the central issue in artificial
intelligence work over the last 15 years only because
it has provided an interface between otherwise isolated
modules and conference papers.

2. The evolution of intelligence

We already have an existence proof of, the
possibility of intelligent entities: human beings.
Additionally, many animals are intelligent to some
degree. (This is a subject of intense debate, much of
which really centers around a definition of
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intelligence.) They have evolved over the 4.6 billion
year history of the earth.

It is instructive to reflect on the way in which
earth-based biological evolution spent its time.
Single-cell entities arose out of the primordial soup
roughly 3.5 billion years ago. A billion years passed
before photosynthetic plants appeared. After almost
another billion and a half years, around 550 million
years ago, the first fish and Vertebrates arrived, and
then insects 450 million years ago. Then things
started moving fast. Reptiles arrived 370 million
years ago, followed by dinosaurs at 330 and
mammals at 250 million years ago. The first
primates appeared 120 million years ago and the
immediate predecessors to the great apes a mere 18
million years ago. Man arrived in roughly his present
form 2.5 million years ago. He invented agriculture a
mere 10,000 years ago, writing less than 5000 years
ago and "expert" knowledge only over the last few
hundred years,

This suggests that problem solving behavior,
language, expert knowledge and application, and
reason, are all pretty simple once the essence of being
and reacting are available. That essence is the ability
to move around in a dynamic environment, sensing
the surroundings to a degree sufficient to achieve the
necessary maintenance of life and reproduction. This
part of intelligence is where evolution has
concentrated its time—it is much harder.

I believe that mobility, acute vision and the ability
to carry out survivalrelated tasks in a dynamic
environment provide a necessary basis for the
development of true intelligence. Moravec [11] argues
this same case rather eloquently.

Human level intelligence has provided us with an
existence proof but we must be careful about what
the lessons are to be gained from it.

2. 1. A story

Suppose it is the 1890s. Artificial flight is the
glamor subject in science, engineering, and venture
capital circles. A bunch of AF researchers  are
miraculously transported by a time machine to the
1980s for a few hours. They spend the whole time in
the passenger cabin of a commercial passenger
Boeing 747 on a medium duration flight.

Returned to the 1890s they feel vigorated, knowing
that AF is possible on a grand scale. They
immediately set to work duplicating what they have
seen. They make great progress in designing pitched
seats, double pane windows, and know that if only
they can figure out those weird "plastics" they will

have their grail within their grasp. (A few
connectionists amongst them caught a glimpse of an
engine with its cover off and they are preoccupied
with inspirations from that experience.)

3. Abstraction as a dangerous weapon

Artificial intelligence researchers are fond of pointing
out that AI is often denied its rightful successes. The
popular story goes that when nobody has any good
idea of how to solve a particular sort of problem (e.g.
playing chess) it is known as an AI problem. When
an algorithm developed by AI researchers successfully
tackles such a problem, however, AI detractors claim
that since the problem was solvable by an algorithm,
it wasn't really an AI problem after all. Thus AI
never has any successes. But have you ever heard of
an AI failure?

I claim that AI researchers are guilty of the same
(self) deception. They partition the problems they
work on into two components. The AI component,
which they solve, and the non-AI component which,
they don't solve. Typically, AI "succeeds" by defining
the parts of the problem that are unsolved as not AI.
The principal mechanism for this partitioning is
abstraction. Its application is usually considered part
of good science, not, as it is in fact used in AI, as a
mechanism for self-delusion. In AI, abstraction is
usually used to factor out all aspects of perception
and motor skills. I argue below that these are the hard
problems solved by intelligent systems, and further
that the shape of solutions to these problems
constrains greatly the correct solutions of the small
pieces of intelligence which remain.

Early work in AI concentrated   on games,
geometrical problems, symbolic algebra, theorem
proving, and other formal systems (e.g. [6, 9]). In
each case the semantics of the domains were fairly
simple.

In the late sixties and early seventies the blocks
world became a popular domain for AI research. It had
a uniform and simple semantics. The key to success
was to represent the state of the world completely and
explicitly. Search techniques could then be used for
planning within this well-understood world. Learning
could also be done within the blocks world; there
were only a few simple concepts worth learning and
they could be captured by enumerating the set of
subexpressions which must be contained in any
formal description of a world including an instance of
the concept. The blocks world was even used for
vision research and mobile robotics, as it provided
strong constraints on the perceptual processing
necessary [12].
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Eventually criticism surfaced that the blocks world
was a "toy world" and that within it there were
simple special purpose solutions to what should be
considered more general problems. At the same time
there was a funding crisis within AI (both in the US
and the UK, the two most active places for AI
research at the time). AI researchers found themselves
forced to become relevant. They moved into more
complex domains, such as trip planning, going to a
restaurant, medical diagnosis, etc.

Soon there was a new slogan: "Good representation
is the key to AI" (e.g. conceptually efficient
programs in [2]). The idea was that by representing
only the pertinent facts explicitly, the semantics of a
world (which on the surface was quite complex) were
reduced to a simple closed system once again.
Abstraction to only the relevant details thus
simplified the problems.

Consider a chair for example. While the following
two characterizations  are true:

 (CAN (SIT-ON PERSON CHAIR)), (CAN
(STAND-ON PERSON CHAIR)),

there is much more to the concept of a chair. Chairs
have some flat (maybe) sitting place, with perhaps a
back support. They have a range of possible sizes,
requirements on strength, and- a range of possibilities
in shape. They often have some sort of covering
material, unless they are made of wood, metal or
plastic. They sometimes are soft in particular places.
They can come from a range of possible styles. In
particular the concept of what is a chair is hard to
characterize simply. There is certainly no AI vision
program which can find arbitrary chairs in arbitrary
images; they can at best find one particular type of
chair in carefully selected images.

This characterization, however, is perhaps the
correct AI representation of solving certain problems;
e.g., a person sitting on a chair in a room is hungry
and can see a banana hanging from the ceiling just
out of reach. Such problems are never posed to AI
systems by showing them a photo of the scene. A
person (even a young child) can make the right
interpretation of the photo and suggest a plan of
action. For AI planning systems however, the
experimenter is required to abstract away most of the
details to form a simple description in terms of
atomic concepts such as PERSON, CHAIR and
BANANAS.

But this abstraction is the essence of intelligence
and the hard part of the problems being solved. Under
the current scheme the abstraction is done by the
researchers leaving little for the AI programs to do

but search. A truly intelligent program would study
the photograph, perform the abstraction and solve the
problem.

The only input to most AI programs is a restricted
set of simple assertions deduced from the real data by
humans. The problems of recognition, spatial
understanding, dealing with sensor noise, partial
models, etc. are all ignored. These problems are
relegated to the realm of input black boxes.
Psychophysical evidence suggests they are all
intimately tied up with the representation of the
world used by an intelligent system.

There is no clean division between perception
(abstraction) and reasoning in the real. world. The
brittleness of current AI systems attests to this fact.
For example, MYCIN [13] is an expert at diagnosing
human bacterial infections, but it really has no model
of what a human (or any living creature) is or how
they work, or what are plausible things to happen to
a human. If told that the aorta is ruptured and the
patient is losing blood at the rate of a pint every
minute, MYCIN will  try to find a bacterial cause of
the problem.

Thus, because we still perform all the abstractions
for our programs, most AI work is still done in the
blocks world. Now the blocks have slightly different
shapes and colors, but their underlying semantics
have not changed greatly.

It could be argued that performing this abstraction
(perception) for AI programs is merely the normal
reductionist use of abstraction common in all good
science. The abstraction reduces the input data so that
the program experiences the same perceptual world
(Merkwelt in [15]) as humans. Other (vision)
researchers will independently fill in the details at
some other time and place. I object to this on two
grounds. First, as Uexküll and others have pointed
out, each animal species, and clearly each robot
species with their own distinctly non-human sensor
suites, will have their own different Merkwelt.
Second, the Merkwelt we humans provide our
programs is based on our own introspection. It is by
no means clear that such a Merkwelt is anything like
what we actually use internally—it could just as
easily be an output coding for communication
purposes (e.g., most humans go through life never
realizing, they have a large blind spot almost in the
center of their visual fields).

The first objection warns of the danger that
reasoning strategies developed for the human-assumed
Merkwelt may not be valid when real sensors and
perception processing is used. The second objection
says that even with human sensors and perception the
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Merkwelt may not be anything like that used by
humans. In fact, it may be the case that our
introspective descriptions of our internal
representations are completely misleading and quite
different from what we really use.

3.1. A continuing story

Meanwhile our friends in the 1890s are busy at
work on their AF machine. They have come to agree
that the project is too big to be worked on as a single
entity and that they will need to become specialists in
different areas. After all, they had asked questions of
fellow passengers on their flight and discovered that
the Boeing Co. employed over 6000 people to build
such an airplane.

 Everyone is busy but there is not a lot of
communication between the groups. The people
making the passenger seats used the finest solid steel
available as the framework. There was some
muttering that perhaps they should use tubular steel
to save weight, but the general consensus was that if
such an obviously big and heavy airplane could fly
then clearly there was no problem with weight.

On their observation flight none of the original
group managed to get a glimpse of the driver's seat,
but they have done some hard thinking and think they
have established the major constraints on what should
be there and how it should work. The pilot, as he
will be called, sits in a seat above a glass floor so
that he can see the ground below so he will know
where to land. There are some side mirrors so he can
watch behind for other approaching airplanes. His
controls consist of a foot pedal to control speed (just
as in these newfangled automobiles that are starting
to appear), and a steering wheel to turn left and right.
In addition, the wheel stem can be pushed forward and
back to make the airplane go up and down. A clever
arrangement of pipes measures airspeed of the
airplane and displays it on a dial. What more could
one want? Oh yes. There's a rather nice setup of
louvers in the windows so that the driver can get
fresh air without getting the full blast of the wind in
his face.

An interesting sidelight is that all the researchers
have by now abandoned the study of aerodynamics.
Some of them had intensely questioned their fellow
passengers on this subject and not one of the modern
flyers had known a thing about it. Clearly the AF
researchers had previously been wasting their time in
its pursuit.

4. Incremental intelligence

I wish to build completely autonomous mobile
agents that co-exist in the world with humans, and
are seen by those humans as intelligent beings in
their own right. I will call such agents Creatures.
This is my intellectual motivation. I have no
particular interest in demonstrating how human
beings work, although humans, like other animals,
are interesting objects of study in this endeavor as
they are successful autonomous agents. I have no
particular interest in applications  it seems clear to
me that if my goals can be met then the range of
applications for such Creatures will be limited only
by our (or their) imagination. I have no particular
interest in the philosophical implications of
Creatures, although clearly there will be significant
implications.

Given the caveats of the previous two sections and
considering the parable of the AF researchers, I am
convinced that I must tread carefully in this endeavor
to avoid some nasty pitfalls.

For the moment then, consider the problem of
building Creatures as an engineering problem. We
will develop an engineering methodology for building
Creatures.

First, let us consider some of the requirements for our
Creatures.

• A Creature must cope appropriately and in a timely
fashion with changes in its dynamic environment.

• A Creature should be robust with respect to its
environment; minor changes in the properties of
the world should not lead to total collapse of the
Creature's behavior; rather one should expect only a
gradual change in capabilities of the Creature as the
environment changes more and more.

• A Creature should be able to maintain multiple
goals and, depending on the circumstances it finds
itself in, change which particular goals it is
actively pursuing; thus it can both adapt to
surroundings and capitalize on fortuitous
circumstances.

• A Creature should do something in the world; it
should have some purpose in being.

Now, let us consider some of the valid engineering
approaches to achieving these requirements. As in all
engineering endeavors it is necessary to decompose a
complex system into parts, build the parts, then
interface them into a complete system.

4. 1. Decomposition by function.
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Perhaps the strongest, traditional notion of
intelligent systems (at least implicitly among AI
workers) has been of a central system, with
perceptual modules as inputs and action modules as
outputs. The perceptual modules deliver a symbolic
description of the world and the action modules take a
symbolic description of desired actions and make sure
they happen in the world. The central system then is
a symbolic information processor.

Traditionally, work in perception (and vision is the
most commonly studied form of perception) and work
in central systems has been done by different
researchers and even totally different research
laboratories. Vision workers are not immune to
earlier criticisms of AI workers. Most vision research
is presented as a transformation from one image
representation (e.g., a raw grey scale image) to
another registered image (e.g., an edge image). Each
group, AI and vision, makes assumptions about the
shape of the symbolic interfaces. Hardly anyone has
ever connected a vision system to an intelligent
central system. Thus the assumptions independent
researchers make are not forced to be realistic. There
is a real danger from pressures to neatly circumscribe
the particular piece of research being done.

The central system must also be decomposed into
smaller pieces. We see subfields of artificial
intelligence such as "knowledge representation",
"learning", "planning", "qualitative reasoning", etc.
The interfaces between these modules are also subject
to intellectual abuse.

When researchers working on a particular module
get to choose both the inputs and the outputs that
specify the module requirements I believe there is
little chance the work they do will fit into a complete
intelligent system.

This bug in the functional decomposition approach
is hard to fix. One needs a long chain of modules to
connect perception to action. In order to test any of
them they all must first be built. But until realistic
modules are built it is highly unlikely that we can
predict exactly what modules will be needed or what
interfaces they will need.

4.2. Decomposition by activity

An alternative decomposition makes no distinction
between peripheral systems, such as vision, and
central systems. Rather the fundamental slicing up of
an intelligent system is in the orthogonal direction
dividing it into activity producing subsystems. Each
activity, or behavior producing system individually
connect  s sensing to action. We refer to an activity
producing system as a layer. An activity is a pattern

of interactions with the world. Another name for our
activities might well be skill, emphasizing that each
activity can at least post facto be rationalized as
pursuing some purpose. We have chosen the word
activity, however, because our layers must decide
when to act for themselves, not be some subroutine
to be invoked at the beck and call of some other
layer.

The advantage of this approach is that it gives an
incremental path from very simple systems to
complex autonomous intelligent systems. At each
step of the way it is only necessary to build one
small piece, and interface it to an existing, working,
complete intelligence.

 The idea is to first build a very simple complete
autonomous system, and test it in the real world.
Our favourite example of such a system is a Creature,
actually a mobile robot, which avoids hitting things.
It senses objects in its immediate vicinity and moves
away from them, halting if it senses something in its
path. It is still necessary to build this system by
decomposing it into parts, but there need be no clear
distinction between a "perception subsystem", a
"central system" and an "action system". In fact, there
may well be two independent channels connecting
sensing to action (one for initiating motion, and one
for emergency halts), so there is no single place
where "perception" delivers a representation of the
world in the traditional sense.

Next we build an incremental layer of intelligence
which operates in parallel to the first system. It is
pasted on to the existing debugged system and tested
again in the real world. This new layer might directly
access the sensors and run a different algorithm on the
delivered data. The first-level autonomous system
continues to run in parallel, and unaware of the
existence of the second level. For example, in [3] we
reported on building a first layer of control which let
the Creature avoid objects and then adding a layer
which instilled an activity of trying to visit distant
visible places. The second layer injected commands to
the motor control part of the first layer directing the
robot towards the goal, but independently the first
layer would cause the robot to veer away from
previously unseen obstacles. The second layer
monitored the progress of the Creature and sent
updated motor commands, thus achieving its goal
without being explicitly aware of obstacles, which
had been handled by the lower level of control.

5. Who has the representations?
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With multiple layers, the notion of perception
delivering a description of the world gets blurred even
more as the part of the system doing perception is
spread out over many pieces which are not
particularly connected by data paths or related by
function. Certainly there is no identifiable place
where the "output" of perception can be found.
Furthermore, totally different sorts of processing of
the sensor data proceed independently and in parallel,
each affecting the overall system activity through
quite different channels of control.

In fact, not by design, but rather by observation we
note that a common theme in the ways in which our
layered and distributed approach helps our Creatures
meet our goals is that there is no central
representation.

• Low-level simple activities can instill the Creature
with reactions to dangerous or important changes
in its environment. Without complex
representations and the need to maintain those
representations and reason about them, these
reactions can easily be made quick enough to serve
their purpose. The key idea is to sense the
environment often, and so have an up-to-date idea
of what is happening in the world.

• By having multiple parallel activities, and by
removing the idea of a central representation, there
is less chance that any given change in the class of
properties enjoyed by the world can cause total
collapse of the system. Rather one might expect
that a given change will at most incapacitate some
but not all of the levels of control. Gradually as a
more alien world is entered (alien in the sense that
the properties it holds are different from the
properties of the world in which the individual
layers were debugged), the performance of the
Creature might continue to degrade. By not trying
to have an analogous model of the world, centrally
located in the system, we are less likely to have
built in a dependence on that model being
completely accurate. Rather, individual layers
extract only those aspects [1] of the world which
they find relevant-projections of a representation
into a simple subspace, if you like. Changes in the
fundamental structure of the world have less chance
of being reflected in every one of those projections
than they would have of showing up as a difficulty
in matching some query to a central single world
model.

• Each layer of control can be thought of as having its
own implicit purpose (or goal if you insist). Since
they are active layers, running in parallel and with
access to sensors, they can monitor the
environment and decide on the appropriateness of

their goals. Sometimes goals can be abandoned
when circumstances seem unpromising, and other
times fortuitous circumstances can be taken
advantage of. The key idea here is to be using the
world as its own model and to continuously match
the preconditions of each goal against the real
world. Because there is separate hardware for each
layer we can match as many goals as can exist in
parallel, and do not pay any price for higher
numbers of goals as we would if we tried to add
more and more sophistication to a single processor,
or even some multiprocessor with a
capacity-bounded network.

• The purpose of the Creature is implicit in its
higher-level purposes, goals or layers. There need
be no explicit representation of goals that some
central (or distributed) process selects from to
decide what. is most appropriate for the Creature to
do next.

5.1. No representation versus no central
representation

Just as there is no central representation there is not
even a central system. Each activity producing layer
connects perception to action directly. It is only the
observer of the Creature who imputes a central
representation or central control. The Creature itself
has none; it is a collection of competing behaviors.
Out of the local chaos of their interactions there
emerges, in the eye of an observer, a coherent pattern
of behavior. There is no central purposeful locus of
control. Minsky [10] gives a similar account of how
human behavior is generated.

Note carefully that we are not claiming that chaos
is a necessary ingredient of intelligent behavior.
Indeed, we advocate careful engineering of all the
interactions within the system (evolution had the
luxury of incredibly long time scales and enormous
numbers of individual experiments and thus perhaps
was able to do without this careful engineering).

We do claim however, that there need be no
explicit representation of either the world or the
intentions of the system to generate intelligent
behaviors for a Creature. Without such explicit
representations, and when viewed locally, the
interactions may indeed seem chaotic and without
purpose.

I claim there is more than this, however. Even at a
local, level we do not have traditional AI
representations. We never use tokens which have any
semantics that can be attached to them. The best that
can be said in our implementation is that one number
is passed from a process to another. But it is only by



www.manaraa.com

looking at the state of both the first and second
processes that that number can be given any
interpretation at all. An extremist might say that we
really do have representations, but that they are just
implicit. With an appropriate mapping of the
complete system and its state to another domain, we
could define a representation that these numbers and
topological connections between processes somehow
encode.

However we are not happy with calling such
things a representation. They differ from standard
representations in too many ways.

There are no variables (e.g. see [1] for a more
thorough treatment of this) that need instantiation in
reasoning processes. There are no rules which need to
be selected through pattern matching. There are no
choices to be made. To a large extent the state of the
world determines the action of the Creature. Simon
[14] noted that the complexity of behavior of a
system was not necessarily inherent in the
complexity of the creature, but Perhaps in the
complexity of the environment. He made this
analysis in his description of an Ant wandering the
beach, but ignored its implications in the next
paragraph when he talked about humans. We
hypothesize (following Agre and Chapman) that
much of even human level activity is similarly a
reflection of the world through very simple
mechanisms without detailed representations.

6. The methodology, in practice

In order to build systems based on an activity
decomposition so that they are truly robust we must
rigorously follow a careful methodology.

6. 1. Methodological maxims

First, it is vitally important to test the Creatures
we build in the real world; i.e., in the same world
that we humans inhabit. It is disastrous to fall into
the temptation of testing them in a simplified world
first, even with the best intentions of later
transferring activity to an unsimplified world. With a
simplified world (matte painted walls, rectangular
vertices everywhere, colored blocks as the only
obstacles) it is very easy to accidentally build a
submodule of the system which happens to rely on
some of those simplified properties. This reliance can
then easily be reflected in the requirements on the
interfaces between that submodule and others. The
disease spreads and the complete system depends in a
subtle way on the simplified world. When it comes
time to move to the, unsimplified world, we
gradually and painfully realize that every piece of the

system must be rebuilt. Worse than that we may need
to rethink the total design as the issues may change
completely. We are not so concerned that it might be
dangerous to test simplified Creatures first and later
add more sophisticated layers of control because
evolution has been successful using this approach.

Second, as each layer is built it must be tested
extensively in the real world. The system must
interact with the real world over extended periods. Its
behavior must be observed and be carefully and
thoroughly debugged. When a second layer is added to
an existing layer there are three potential sources of
bugs: the first layer, the second layer, or the
interaction of the two layers. Eliminating the first of
these source of bugs as a possibility makes finding
bugs much easier. Furthermore, there is only one
thing possible to vary in order to fix the bugs—the
second layer.

6.2. An instantiation of the methodology

We have built a series of four robots based on the
methodology of task decomposition. They all operate
in an unconstrained dynamic world (laboratory and
office areas in the MIT Artificial Intelligence
Laboratory). They successfully operate with people
walking by, people deliberately trying to confuse
them, and people just standing by watching them.
All four robots are Creatures in the sense that on
power-up they exist in the world and interact with it,
pursuing multiple goals determined by their control
layers implementing different activities. This is in
contrast to other mobile robots that are given
programs or plans to follow for a specific mission,

The four robots are shown in Fig. 1. Two are
identical, so there are really three, designs. One uses
an offboard LISP machine for most of its
computations, two use onboard combinational
networks, and one uses a custom onboard parallel
processor. All the robots implement the same
abstract architecture, which we call the subsumption
architecture which embodies the fundamental ideas
of decomposition into layers of task achieving
behaviors, and incremental composition through
debugging in the real world. Details of these
implementations can be found in [3].

Each layer in the subsumption architecture is
composed of a fixed-topology network of simple
finite state machines. Each finite state machine has a
handful of states, one or two internal registers, one or
two internal timers, and access to simple
computational machines, which can compute things
such as vector sums. The finite state machines run
asynchronously, sending and receiving fixed length
messages (1-bit messages on the two small robots,
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and 24-bit messages on the larger ones) over wires.
On our first robot these were virtual wires; on our
later robots we have used physical wires to connect
computational components.

There is no central locus of control. Rather, the finite
state machines are data-driven by the messages they
receive. The arrival of messages or the expiration of
designated time periods cause the finite state
machines to change state. The finite state machines
have access to the contents of the messages and
might output them, test them with a predicate and
conditionally branch to a different state, or pass them
to simple computation elements. There is no
possibility of access to global data, nor of
dynamically established communications links. There
is thus no possibility of global control. All finite
state machines are equal, yet at the same time they
are prisoners of their fixed topology connections.

Layers are combined through mechanisms we call
suppression (whence the name subsumption
architecture) and inhibition. In both cases as a new
layer is added, one of the new wires is side-tapped
into an existing wire. A pre-defined time constant is
associated with each side-tap. In the case of
suppression the side-tapping occurs on the input side
of a finite state machine. If a message arrives on the
net wire it is directed to the input port of the finite
state machine as though it had arrived on the existing
wire. Additionally, any new messages on the existing
wire are suppressed (i.e., rejected) for the specified
time period. For inhibition the side-tapping occurs on
the output side of a finite state machine. A message
on the new wire simply inhibits messages being
emitted on the existing wire for the specified time
period. Unlike suppression the new message is not
delivered in their place.

As an example, consider the three layers of Fig. 2.
These are three layers of control that we have run on
our first mobile robot for well over a year. The robot
has a ring of twelve ultrasonic sonars as its primary
sensors. Every second these sonars are run to give
twelve radial depth measurements. Sonar is extremely
noisy due to many objects being mirrors to sonar.
There are thus problems with specular reflection and
return paths following multiple reflections due to
surface skimming with low angles of incidence (less
than thirty degrees).
In more detail the three layers work as follows:

Fig. 1. The four MIT AI laboratory Mobots. Left-most is the first
built Allen, which relies on an offboard LISP machine for
computation support. The right-most one is Herbert, shown with a
24 node CMOS parallel processor surrounding its girth. New
sensors and fast early vision processors are still to be built and
installed. In the middle are Tom and Jerry, based on a
commercial toy chassis, with single PALs (Programmable Array
of Logic) as their controllers.

 (1) The lowest-level layer implements a behavior
which makes the robot (the physical embodiment of
the Creature) avoid hitting objects. It both avoids
static objects and moving objects, even those that are
actively attacking it. The finite state machine labelled
sonar simply runs the sonar devices and every second
emits an instantaneous map with the readings
converted to polar coordinates. This map is passed on
to the collide and feelforce finite state machine. The
first of these simply watches to see if there is
anything dead ahead, and if so sends a halt message to
the finite state machine in charge of running the
robot forwards—if that finite state machine is not in
the correct state the message may well be ignored.
Simultaneously, the other finite state machine
computes a repulsive force on the robot, based on an
inverse square law, where each sonar return is
considered to indicate the presence of a repulsive
object. The contributions from each sonar are added to
produce an overall force acting on the robot. The
output is passed to the runaway machine which
thresholds it and passes it on to the turn machine
which orients the robot directly away from the
summed repulsive force. Finally, the forward
machine drives the robot forward. Whenever this
machine receives a halt message while the robot is
driving forward, it commands the robot to halt.

This network of finite state machines generates
behaviors which let the robot avoid objects. If it
starts in the middle of an empty room it simply sits
there. If someone walks up to it, the robot moves
away. If it moves in the direction of other obstacles it
halts. Overall, it manages to exist in a dynamic
environment without hitting or being hit by objects.
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The next layer makes the robot wander about,
when not busy avoiding objects. The wander finite
state machine generates a random heading for the
robot every ten seconds or so. The avoid machine
treats that heading as an attractive force and sums it
with the repulsive force computed from the sonars. It
uses the result to suppress the lower-level behavior,
forcing the robot to move in a direction close to what
wander decided but at the same time avoid any
obstacles. Note that if the. turn and forward finite
state machines are busy running the robot the new
impulse to wander will be ignored.

(3) The third layer makes the robot try to explore.
It looks for distant places, then tries to reach them.
This layer suppresses the wander layer, and observes
how the bottom layer diverts the robot due. to
obstacles, (perhaps dynamic). It corrects for any
divergences and the robot achieves the goal.

Fig. 2. We wire, finite state machines together into layers of
control. Each layer is built on top of existing layers. Lower level
layers never rely on the existence of higher level layers.

The whenlook finite state machine notices when
the robot is not busy moving, and starts up, the free
space finder (labelled stereo in the diagram) finite
state machine. At the same time it inhibits wandering
behavior so that the observation will remain valid.
When a path is observed it is sent to the pathplan
finite state machine, which injects a commanded
direction to the avoid finite state machine. In this
way, lower-level obstacle avoidance continues to
function. This may cause the robot to go in a
direction different to that desired by pathplan. For
that reason the actual path of the robot is monitored
by the integrate finite state machine, which sends
updated estimates to the pathplan machine. This
machine then acts as a difference engine forcing the
robot in the desired direction and compensating for
the actual path of the robot as it avoids obstacles.

These particular layers were implemented on our
first robot. See [3] for more details. Brooks and
Connell [5] report on another three layers
implemented on that particular robot.

7. What this is not

The subsumption architecture with its network of
simple machines is reminiscent, at the surface level
at least, with a number of mechanistic approaches to
intelligence, such as connectionism and neural
networks. But it is different in many respects for
these endeavors, and also quite different from many
other post-Dartmouth traditions in artificial
intelligence. We very briefly explain those differences
in the following sections.

7.1. It isn't connectionism

Connectionists try to make networks of simple
processors. In that regard, the things they build (in
simulation only—no connectionist has ever driven a
real robot in a real environment, no matter how
simple) are similar to the subsumption networks we
build. However, their processing nodes tend to be
uniform and they are looking (as their name suggests)
for revelations from understanding how to connect
them correctly (which is usually assumed to mean
richly at least). Our nodes are all unique finite state
machines and the density of connections is very much
lower, certainly not uniform, and very low indeed
between layers. Additionally, connectionists seem to
be looking for explicit distributed representations to
spontaneously arise from their networks. We harbor
no such hopes because we believe representations are
not necessary and appear only in the eye or mind of
the observer.

7.2. It isn't neural networks

Neural networks is the parent discipline of which
connectionism is a recent incarnation. Workers in
neural networks claim that there is some biological
significance to their network nodes, as models of
neurons. Most of the, models seem wildly
implausible given the paucity of modeled connections
relative to the thousands found in real neurons. We
claim no biological significance in our choice of
finite state machines as network nodes.

7.3. It isn't production rules

Each individual activity producing layer of our
architecture could be viewed as an implementation of
a production rule. When the right conditions are met
in the environment a certain action will be performed.
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We feel that analogy is a little like saying that any
FORTRAN program with IF statements is
implementing a production rule system. A standard
production system really is more—it has a rule base,
from which a rule is selected based on matching
preconditions of all the rules to some database. The
preconditions may include variables which must be
matched to individuals in the database, but layers run
in parallel and have no variables or need for
matching. Instead, aspects of the world are extracted
and these directly trigger or modify certain behaviors
of the layer.

7.4. It isn't a blackboard

If one, really wanted, one could make an analogy
of our networks to a blackboard, control architecture.
Some of the finite state machines would be localized
knowledge sources. Others would be processes acting
on these knowledge sources by finding them on the
blackboard. There is a simplifying point in our,
architecture however: all the processes know exactly
where to  look on the blackboard as they are
hard-wired to the correct place. I think this forced
analogy indicates its own weakness. There is no
flexibility at all on where a process can gather
appropriate knowledge. Most advanced blackboard
architectures make heavy use of the general sharing
and availability of almost all knowledge.
Furthermore, in spirit at least, blackboard systems
tend to hide from a consumer of knowledge who the
particular producer  was. This is the primary means
of abstraction in blackboard systems. In our system
we make such connections explicit and permanent.

7.5. It isn't German philosophy

In some circles much credence is given to
Heidegger as one who understood the dynamics of
existence. Our approach has certain similarities to
work inspired by this German philosopher (e.g. [1])
but our work was not so inspired. It is based purely
on engineering considerations. That does not preclude
it from being used in philosophical debate as an
example on any side of any fence, however.

8. Limits to growth

Since our approach is a performance-based one, it
is the performance of the systems we build which
must be used to measure its usefulness and to point
to its limitations.

We claim that as of mid-1987 our robots, using
the subsumption architecture to implement complete
Creatures, are the most reactive real-time mobile
robots in existence. Most other mobile robots are

still at the stage of individual "experimental runs" in
static environments, or at best in completely mapped
static environments. Ours, on the other hand, operate
completely autonomously in complex dynamic
environments at the flick of their on switches, and
continue until their batteries are drained. We believe
they operate at a level closer to simple insect level
intelligence than to bacteria level intelligence. Our
goal (worth nothing if we don't deliver) is simple
insect level intelligence within two years. Evolution
took 3 billion years to get from single cells to
insects, and only another 500 million years from
there to humans. This statement is not intended as a
prediction of our future performance, but rather to
indicate the nontrivial nature of insect level
intelligence.

Despite this good performance to date, there are a
number of serious questions about our approach. We
have beliefs and hopes about how these questions
will be resolved, but under our criteria only
performance truly counts. Experiments and building
more complex systems take time, so with the caveat
that the experiments described below have not yet
been performed we outline how we currently see our
endeavor progressing. Our intent in discussing this is
to indicate that there is at least a plausible path
forward to more intelligent machines from our current
situation.

Our belief is that the sorts of activity producing
layers of control we are developing (mobility, vision
and survival related tasks) are necessary prerequisites
for higher-level intelligence in the style we attribute
to human beings.

The most natural and serious questions concerning
limits of our approach are:

• How many layers can be built in the subsumption
architecture before the interactions between layers
become too complex to continue?

• How complex can the behaviors be that are
developed without the aid of central representations?

• Can higher-level functions such as learning occur in
these fixed topology networks of simple finite state
machines?

We outline our current thoughts on these questions.

8.1. How many layers?

The highest number of layers we have run on a
physical robot is three. In simulation we have run six
parallel layers. The technique of completely
debugging the robot on all existing activity
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producing layers before designing and adding a new
one seems to have been practical till now at least.

8.2. How complex?

We are currently working towards a complex
behavior pattern on our fourth robot which will
require approximately fourteen individual activity
producing layers.

The robot has infrared proximity sensors for local
obstacle avoidance. It has an onboard manipulator
which can grasp objects at ground and table-top
levels, and also determine their rough weight. The
hand has depth sensors
mounted on it so that homing in on a target object
in order to grasp it can be controlled directly. We are
currently working on a structured light laser scanner
to determine rough depth maps in the forward looking
direction from
the robot.

The high-level behavior we are trying to instill in
this Creature is to wander around the office areas of
our laboratory, find open office doors, enter, retrieve
empty soda cans from cluttered desks in crowded
offices and return them to a central repository.

In order to achieve this overall behavior a number
of simpler task achieving behaviors are necessary 
They include: avoiding objects, following walls,
recognizing doorways and going through them,
aligning on learned landmarks, heading in a
homeward direction, learning homeward bearings at
landmarks and following them, locating table-like
objects, approaching such objects, scanning table
tops for cylindrical objects of roughly the height of a
soda can, serving the manipulator arm, moving the
hand above sensed objects, using the hand sensor to
look for objects of soda can size sticking up from a
background, grasping objects if they are light
enough, and depositing objects.

The individual tasks need not be coordinated  by
any central controller. Instead they can index off of
the state of the world. For instance the grasp behavior
can cause the manipulator to grasp any object of the
appropriate size seen by the hand sensors. The robot
will not randomly grasp just any object however,
because it will only be when other layers or
behaviors have noticed an object of roughly the right
shape on top of a table-like object that the grasping
behavior will find itself in a position where its
sensing of the world tells it to react. If, from above,
the object no longer looks like a soda can, the grasp
reflex will not happen and other lower-level behaviors
will cause the robot to look elsewhere for new
candidates.

8.3. Is learning and such possible?

Some insects demonstrate a simple type of learning
that has been dubbed "learning by instinct" [7]. It is
hypothesized that honey bees for example are
pre-wired to learn how to. distinguish certain classes
of flowers, and to learn routes to and from a home
hive and sources of nectar. Other insects, butterflies,
have been shown to be able to learn to distinguish
flowers, but in an information limited way [8]. If
they are forced to learn about a second sort of flower,
they forget what they already knew about the first, in
a manner that suggests the total amount of
information which they know, remains constant.

We have found a way to build fixed topology
networks of our finite state machines which can
perform learning, as an isolated subsystem, at levels
comparable to these examples. At the moment of
course we are in the very position we lambasted most
AI workers for earlier in this paper. We have an
isolated module of a system working, and the inputs
and outputs have been left dangling.

We are working to remedy this situation, but
experimental work with physical Creatures is a
nontrivial and time consuming activity. We find that
almost any pre-designed piece of equipment or
software has so many preconceptions of how they are
to be used built into them, that they are not flexible
enough to be a part of our complete systems. Thus,
as of mid-1987, our work in learning is held up by
the need to build a new sort of video camera and
high-speed low-power processing box to run specially
developed vision algorithms at 10 frames per second.
Each of these steps is a significant engineering
endeavor which we are undertaking as fast as
resources permit.

Of course, talk is cheap.

8.4. The future

Only experiments with real Creatures in real worlds
can answer the natural doubts about our approach.
Time will tell.
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